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This paper points out cases of integrability of the equations describing 
one-dimensional motion of an electrically conducting gas with cslindrical 
and plane symmetry, the case of cylindrical symmetry being considered in 
greater detail. For steads motions with infinite conductivity a general 
solution of the equations is found, and a short description is given of 
the corresponding flows. 

Unsteady selr-similar and non-self-similar motions associated with 
shock waves are considered. A method is given for joining the solutions 
[l-3 f to gas at rest by means of a shock wave. Concrete cases are solved 
which q av have application to the theory of impulsive gaseous discharge. 

1. We will consider the motion to be one-dimensional with cylindrical 
or plane symmetry. All functions characterizing the motion will depend 
on the one geometric coordinate r and time t. 

For the case of a perfect gas of finite conductivity with viscosity 
and heat conductivity neglected, we have for the unknown quantities the 
system 

dV 2(V_l)hQ 
-Pdt= ar 

a2 + r , 
1 r/p (v-1)v _ -- --z 
P dt f+ )” 
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Here Hz and H+ are the cvnents of the magnetic field intensity 
vector, V. is the magnetic viscosity, v = 2 for the case of cylindrical 
syzzaetry andv= 1 for motion with plane waves; the remaining symbols 
are conventional or are obvious from the equations. Ihe magnetic field 
intensity vector H is always perpendicular to the velocity vector. For 
v = 1 the azimuthal component of the field should vanish (h,+= 0). In 
place of one of the equations of the system (l.l)-(1.21, for example, 
the first of Equations (1.11, one can take the equation expressing the 
law of conservation of energy 141 

a pvs -- ( at 2 + *t-h)+ r1-I~{rv-l[v(~+-$++2h)- 

-Y, 2(v- 
( 

i,!$ ; @hi/p)+ $)I} = 0 (1.3) 

In the case of infinite conductivity the system of equations (l.l)- 
(1.2) simplifies because vI= 0. 

For homothermal flows, that is, flows with zero temperature gradient 
111, Equation (1.2) is replaced by the equation 

i?T/ii’r=O or p=B(t)p (14 

For unsteady motions of sn ideal mediuz including shock waves, the 
conditions of conservation of mass, manentm, continuity of the electric- 
al field, and energy must be satisfied. For propagation of a shock wave 
into a quiescent medium they have the form 

Pz (v2 - u) = - PlU, ~2P2(~2- u) + Pz’ = PI’ (u = dr, / dt) (1.5) 

h Z2Pl 2 = hrlpz2, hv2p12 = blp22 (W 

(v2 - u) (Jg + 5 f h2) + t‘2~2'= -u (3 i-k) (1.7) 

where the subscript 1 denotes quantities in the undisturbed medium and 
the subscript 2 quantities behind the shock wave front, u is the speed 
of the wave, and r,(t) its radius. 

2. In the steady case the system (l.l)-(1.3) with v. = 0, v = 2 can 
be integrated completely, having the five integrals * 

p = qpr, pvr = c2, h, = c3r2p2, h, = cpp2, ;+ *p -t p = C6 (2.1) 

l The possibility of integrating the system(l.l)-(1.2) in the station- 
ary case rhen there is only one of the components hZ or h 

# 
was pointed 

out by K. P. Staniukovich [ 5 1. 
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where cl, . . . . c5 are arbitrary constants. 

A characteristic singularity of the flows under consideration is the 
presence in the stream of two limit lines on which 

&I 
-== ar , C=a* _(‘v;2h)L/: 

that is, the speed of the gas is equal to the total speed of sound*. If 
r,, and rl(rO < rl) are the radii of the limit circles, then in the 
general case flow is possible only in the region enclosed between the 
cylinders with radii r,, and rl, where either u < a+ or u > a*. 

'lhe dependence of the radii rO, r1 and of the value of the density at 
the limit lines on the constants cl, . . . . c5 is given by the relations 

(rc1py-2 + 2c, _t 2c,r2)p3r8 = c22, 
r(rfl) 
2 (7 - 1) 

clpy-1 + 3p(c, + c3r2) = c5 

Investigation of the solution (2;l) shows that in the subsonic (super- 
sonic) regime as r increases from r0 to rl the speed may at first de- 
crease (increase)to a certain minimum (maximwn), and then increase (de- 
crease) to the value a*. 

In the more general case of finite conductivity the integration in 

closed form cannot be carried out. 

We note that in the case under consideration two finite algebraic in- 

tegrals can be found for the system (l.l)-(1.2) 

pw-1 = Ml, $+ & + (II - 1) M2rY--lh~Ia + M,h,‘la =M4 

where M,, . . .* 1, are arbitrary constants. In the case of isothermal 
steady flows with infinite conductivity for v = 2 the problem of inte- 
grating the system of equations (1.1) and (1.4) leads to the solution of 
one first-order ordinary differential equation, which is easily integrat- 
ed when h 4’ 0. 

In the case y = 2, ws= 0 the solution of the system of equations 
(1.1) and (1.2) also simplifies, since it has the integral 

where 9,(t) is an arbitrary function of the Lagrangean coordinate 5. It 
is easy to show that if b = 0 then any solution of the equations of 
ordinary gas dynunics permits one to construct a solution of the system 
(1.1) and (1.21, having, in addition, one arbitrary function. For this 

l This fact was also noted in 15 I. 
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it suffices to take 

v = v,, p=po3 P’=Po, p=p*-hh,, h,=@(E)p’ 

where u 

and @(& 

, pO, p,, are the solution of the equations of ordinary gasdynamics, 

is an arbitrary function. ‘Ike conditions (1.5) and (1.7) at the 

shock wave also transform into the gasdynamic ones if p* is introduced 
throughout. 

Thus, there results a special separation of the problem into a purely 

hydrodynamic one together with the problem of determining the magnetic 

pressure. 

(Exarplc. Let us consider the problem of a strong explosion along a 

plane in an ideal conducting gas in its usual formulation [6 1. For a 
strong explosion p2 l >> p1 l . Neglecting pl* in (1.5) and (1.7) re have 

the conditions on the shock wave [7 1 

2u 2 

u2=3 9 pz*.= s plus1 4, = ghzl# Pa = 3Pl (2.2) 

We take p1 = const. h ]. = const. The solution for v(r, t), P(r, t), 

p*(r, t) is known 16, 8 I. In addition, we have hz/p2 = @<&. Imposing 

the conditions at the shock we find Q(t) = hll/pf. Thus 

( ) 2 

h, = L h,,, 
PI 

p=p*- ; 2!&*l 
( > 

The law of propagrtrtion of the shock wave is the same as in the ordinary 
gasdynamic case. 1 

3. In I9 1 it was shown that the solution of self-similar problems 

for adiabatic motion with va = 0 leads to the integration of tm (in some 

cases one) ordinary equation. 

A new example of a self-similar solution is given below. We consider 

the motion of a piston in a quiescent gas when the speed of motion of 

the piston is given by the law 

U = Altn 

?he initial radius of the piston is equal to zero, and the initial values 

of P, P* hZ, 4 are 

pl = A2r0, p1 = A@, h,, - xA,r-fi, 

Here A,, A2, A3 are dimensional constants, and n, o, /3, x are pure 

numbers. 

Fran dimensional considerations [ 6 1 it follows that this problem with 

V* = 0 is self-similar if the constants n, o, f? are connected by the 
relation 
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B= o-2+22/@+ I) 

Using a numerical method for integrating the system of self-similar 
equations 19 1 it is possible to solve the problem of the motion of a 
cylindrical piston for various values of n and o. Ihe results of calcu- 
lations for the case of a cylindrical piston with n = 0, o = 0, h+ = 0, 
h 21 = 0.025 pp*, y = 2 and y = S/3 are given in the figure in the form 

of the dependence of the dimensionless quantities 

v/t+ p/p2, P/P,, h,/hz2 on A = r/r2 

Here the values of u/v2 on the piston for y = 2 and y = S/3 are equal 
to 1.451 and 1.337 respectively. 

Now let Ye # 0; we take 

v, = 4p A a*paz (A,, al. a2 = const) 

lke problem under consideration of a piston moving with constant speed 
is self-similar if the dimensions of A, depend on the dimensions of A, 
and A,. 

This is realized if the following relationship holds: 

3a, + 
aan + 3al- It 

n+l 
+ (01~ + a2)(o - 3) + 2 = 0 

A class of self-similar solutions exists also for the system of equa- 
tions describing unsteady homothennal flows of a conducting gas. Here 

9(t) is a power of t. As for adiabatic flow, in the case under consider- 
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ation with vm = 0 there exists a l frozen” integral [ 9 1 . Therefore, the 
solution of all self-similar problems reduces to the integration of two 

ordinary equations. 

4. Another class of solutions of the equations of one-dimensional 

magnetohydrodynmnics, which we shall consider in detail, is the case of 

solutions for which the velocity v depends linearly on the radius. 

In the case of adiabatic motion of a gas without shock waves solutions 

of such a type were obtained and investigated by Kulikovskii. 

For arbitrary y this solution contains one arbitrary function, and for 

the most interesting case u = 2 can be written in the form 

r_$, !, = P’ (5) (rp)-I, P,’ (5) = 5P (Z) (: = $\ 
p = PIP (8 + 621 p-“7 t lb = I@ (5) + hll P-4 (4.1) 

Ir, = -& {b* + b, [i2P (5) - 2P1(5)1) 

The function p(t) satisfies the equation 

([A’)2 = f (p)= -JJ-+ /l?tl--u) - 2h, In [R + L, 11-2 $- 1); 

Here b,* .*., b, are arbitrary constants, 5 is the Lagrangean co- 
ordinate, and P(c) an arbitrary function such that P’(t) > 0. For v = 2 

we have an analogous solution containing two arbitrary functions [3 ] 

7. dtL t‘=5dt’ p = P’ (E) (rp)-l 

p = IB,P (E) J- B, - I-I @)I lh-4, 11, = rI (E) p-4 

h, -: $ (B, + B, [E2P(i)- 2P1 (Z)]} 

(4.2) 

(/A’)’ ‘;= /(I*) = B,:L-~ - 2B, In !A j R, 

where B,, . . . . B, are arbitrary constants, and P(e) and II([) > 0 are 
arbitrary functions. The solution (4.2) was also found by Kulikovskii*. 

Solutions analogous to (4.1) and (4.2) of the equations describing 

motion including the force of gravity were considered in I3 I . 

Solutions of the form (4.1) and (4.2), which contain arbitrary func- 

tions, may be joined with a shock wave to the trivial solution - gas at 
rest - and describe the flow of gas accompanied by shock waves. In the 
still medium ahead of the shock wave vl = 0 and, as follows from the 

l On some new exact solutions of the equations of magnetohydrodynamics. 
Dissertation submitted for the degree of candidate in physico-mathe- 
matical science, htoscon, 1959. 
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system (l.l)-(1.21, the d ensity p1 may be any function of r,and the 

magnetic and hydrostatic pressures are related by the equilibrium equa- 

tion 

(4.3) 

From (4.3) it follows that if h+ = 0 or h+ = r-* const, then p1 + 
hZ, = const. 

In the case of a gas with y = 2 (h 
$ 

= 0) the problem of joining the 

solution to still gas by means of a s ock wave (which we will henceforth 

call the joining problem) leads to the gasdynarnic one. 

Now the joining problem for the gasdynamic solution of the form (4.1) 

with arbitrary y was solved in [lo-12 I. In Skin's paper [12 1 the de- 
tonation wave was also considered. As already noted, after solution of 

the gasdynamic problem the conditions for the discontinuity in the field 

(1.6) can be satisfied by the choice of the two arbitrary functions 

appearing in the solution. 

h 
With this choice one of the functions p1 or 

zl remains arbitrary. Using the results of [12 I, in a similar manner 

(for y = 2) we obtain the solution of the problem of joining the solution 

(4.2) with still gas by means of a detonation wave. In view of what has 

been said above, we will not write out the solution of the joining 

problem with y = 2 for a shock wave of arbitrary intensity. The joining 

problem for (4.1) can be easily solved in the limiting case of shock 

waves that are strong in the gasdynamic sense. 

We assume that p,u* >> yp, - 2h,. Then the conditions at the shock 

wave take the form X7 1 L L 

pz = SP1, 

h,, = (~ If + lj2 h,x, 
2 

\r-- 1 1’1 = r+i P1”2 1’2 

In the problem under consideration it is possible 

(4.4) 
2 

; -u 
r-4-l 

to use the arbitrary 

function P([) appearing in the solution (4.1) and also the arbitrarily 

assigned pi(r), hZ1(r), htil(r) and the speed of the shock wave u(r2). 

With the choice of these five functions one can satisfy all the condi- 

tions at the shock wave (4.4). 

Satisfying 

function P(t) 

i'(E) = 

where 

the conditions at the shock, we find that the arbitrary 

should have the form 
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j (t) = +i-4 

4 -._ 

‘--l-,- !+, a = 3 (b9 == consl) 

'l'he law of motion of the shock wave is given by the relation 

r2 = /&'MYSl) (b, = const) 

where P(z) is given by the relation (1.5). 

In order that the equilibrium equation may be satisfied, the initial 

pressure p1 must depend on r in the following way: 

p1 (I*) = blo - h,, (r) - h,, (r) - 2 \ i&T2 ch (A,, = const) 

'Ihe set of constants appearing here can be used to satisfy the other 

conditions exactly or approximately in concrete cases. 

The joining problem can be solved also for arbitrary y and shock 

waves of arbitrary intensity with variable hzl, pl, p1 and h+= 0. Its 

solution can be found, for example, by the method of joining of [ 12 1. 

(ExaBp 1 e. Let us consider the example of the application of the solu- 

tion (4.2) to the problem of the motion of gas being compressed by a 

piston moving with speed 

C’-R $=+fX), (R(t) is the radius 

of the piston) 

The minus sign corresponds to motion toward the center (axis of symmetry), 

and the plus sign to motion away from the center (axis). For simplicity 

we will take the shock wave to be strong. Let the initial values of pl. 

pl# hZ1 be 

p1 -= .-l,rZ,J, p1 =I*-11 21’ hi, = L,r-+ + Lz (Ao, L, LI, LZ = con&) 

Using (4.2) and (2.2). we find that the flow of gas behind the shock 
wave is determined by the formulas 
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Here B, is an arbitrary constant. Among the constants A,, B,, B,, Ls 

there is the relationship 

8L2 + AoB,Bs-L = 0 

For the azimuthal field creating the magnetic field h2 we have 

i _ %JWV 
Q- cr7a.l-12 Cc is the speed of light) 

If-m, ’ 

This follows from the formula 

The law of motion of the piston is given by the relation 

‘11 

where R,, is the radius of the piston at the initial instant t = 0. 

For the converging piston we have the initial value of the velocity 

Such a family of motions can be created, for example, by the applica- 
tion to a gas of an external magnetic field. If there is a vacuum out- 
side the piston, then the total pressure on the piston should be compen- 
sated by the application of an external magnetic field he such that the 
relation p* (R, t) = Hc2/8n= he is satisfied. Naturally the solution 
(4.6) describes the flow for those values of r where pl > 0. hZ, > 0.) 

5. In the case of homothermal flows the system of equations (1. l), 

(1.4) with v = 0 also has exact solutions, where u(r, t) has the same 
form as in (a.11. ‘these solutions contain either arbitrary functions of 

t or arbitrary functions of the time [ 1 I. 

For homothermal flows with vII # 0 one may take vs = v.(t 1. ‘Ihen by 

using the choice of the arbitrary function P(g) appearing in the solution 
of the equations for an ideal medium [ 1 1 it is possible to find a 
particular solution of the full system (1.11, (1.4) when hZ or h+ is 

absent. lhis solution will contain a certain number of arbitrary constants. 

For homothermal flows with linear dependence of velocity on radius 

(for vs = 0) one can also consider the problem of joining the exact 
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solution with still gas through a shock wave. Ihe case when the solution 
contains an arbitrary function of time was considered previously [ 1 1. 

We write the particular solution of the system (l.l), (1.4) in the 
formtlI 

II, ‘L l ‘;;! - i&P (5) - 8, A- 
j” (3 1 ,* -4 

< f’ ’ IJ ‘=s rt (p)p, j (p) E (p’)2 zz2 4, - c%,p-2 

where 61, . ..) Ss are arbitrary constants. We will take 6, = 0. Using 
the relation 

( 

r.? dp 
1( - 2’: Z-2 18 3 - y --\ ( 

t.Er 1 f ffrz 
- 5‘ - - 

72 ,j 

) dfZ, tl:r ;L t cl:; :t I 

from the solution (5.1) and relations (1.51, (1.6) we have 

(1~~ = consf) (s.3) 

n?e relation (S;3) gives the law of motion of the shock wave. 

Satisfying conditions (1,6) we find for the discontinuity in magnetic 
field 

(5.4) 

where ,u(r,) is B known function from (5.3). 

?he dependence P(r, 1 is found from (5.2) if p,(r) is considered a 
given function. For the full solution of the problem, however, it is 
necessary to know P(f). 

Using (5.3) and the form of the function P(r,), we can find the de- 
pendence P(S). ‘It is given by the relations 

P(E) = p IQ(E)] 
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We consider further one special case. Let pl* = 0 (a strong wave> and 

p1 = const. In this case for the function P(J) and the law of motion of 
the shock wave we have the relations 

‘Ihe initial magnetic field is given by the formula 

Ir,, = (2)’ (%;:““!’ [E2 -S3($ + E))] [j i”(‘:z;.y2, ]? _._ 

From (5.1) we find the dependence p ( t > : 

(3.6) 

‘Ihe solution (5.1)-(5.6) can be used for the investigation of concrete 
problems and, in particular, can have application to the problem of com- 
pression of gas by a converging or diverging piston, where the law of 

motion of the piston is given by the dependence 

R = A J/6, (t - t,)* -+ + (‘4 = ~ollst) 

Considering the remarks made in Section 4, one can say that the 

problem of compression of gas by a converging piston is equivalent to 

the problem of an impulsive gaseous discharge with passage of current 

through a gaseous cylinder in the axial direction. ‘Ihe magnetic field of 
the current flowing on the surface of the cylinder will play the role of 

a piston compressing the gas. 

6. (Exonple. Let us consider the exact solution of the problem of 
an impulsive gaseous discharge. Let there be at the initial moment t = 0 

a cylindrical column of gas heated to a temperature at which the con- 
ductivity of the gas may be considered infinite. In the gas there is a 
#frozen in* magnetic field with vector intensity H parallel to the axis 
of the cylinder. The initial density of the gas is constant and equal to 

Pl. and the total pressure in the gas pl* = const. 

The initial intensity of the magnetic field is constant with radius, 
its dependence on the coordinate r being given by the formula 
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where qb(r) is determined from the equation 

Pll’niz - 2W (Bs - f p*rY 9 + B2 = 0 (Bl* * . . l Bs = co=& & > 0. B* > 0) 

The choice of the dependence of hZ1 on r Ii the form (6.1) is based on 
the subsequent use of the solution (5. I)-(5.6) with 6, = 0. Formula (13.1) 
is essentially a consequence of the relation (5.4) with the arbftrary 
constants re-designated. 

Let the Initial radius of the gas cylinder be Re. At the moment t = 0 
a current begins to pass along the GOlUlPn fn the axial direction, varxing 
with time so that the total current Is given by the formula 

For t > 0 as a-consequence of the pinch-effect there begins a contrac- 
tion of the plasma sheath outside of which p = 0. A shock ware will pro- 
pagate toward the center of the gas. It is required to determine the 
motion of the gas between the shock wave and the outer radim of the gas 

collmn. 

In a formulation different from that stated above (In the sense of the 
given initial conditions) the proble8 of the compression of a gaseous 
cylinder by a current was considered in a series of works (see, for 
example, 1 M-14 I). 

We will consider the problem in the approximation of magnetohydro- 
dynamics and suppose that the gradient of temperature in the region be- 
hlnd the shock wave is equal to zero. The ouantitfes p, p, hZ and I be- 
hind the wave front are related by the equations of magnetohydrodynamics 
(1.11, (1.4); on the shock ware front itself the laws (1.51, (1.61, which 
are the boundary conditions for the unknown functions, must be satisfied. 

On the outer surface of the cylinder there must also be satisfied the 
ktnematie condition v(R, t) = #8/d t, where R(t) gives the dependence of 
the radius of the cylinder on time. The solution satisfying the system 
(1.1). (1.4) and the initial and boundary conditions enumerated above has 
the form 

F (Cl 
p = MO--W’ ’ hz = w - B4SP (4)) (PO - fw-’ (6.2) 
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where y(e) is found from the equation 

For the radius R of the cylinder and the radius r2 of the shock wave 
we have 

R @I = h@o - Ss0, &=p$O 

rail)= Z&-1- jwpr"[fh'+Pl' @o-fwl (b-BSW 

From (6.2) it is clear that the temperature In the region of uotlon 

Of the gas grows prOPOrtiOu81 t0 (fj,, - /$ t)- *. If we suppose that 

g** >> PI*, then the puautitT pl* in (1.5) 08~ be neglected. The formulas 
girlng the solution are, thus aimplifled. 

The solution l&2) was obtained with the choice, described fn Section 
5, of (5.1) with 6, = 0. From (8.3) It follows that the total pressare 
on the outer boundary of the cylinder pl * Is equal to the uagaetic pres- 
sure outside the cxllnder 

f ’ 
h, = - 2&R’ 

arising from the passage of the current I over the surf8ce of the cgliader. 

Since in the reelon of flow we took &‘/a, = 0, the differential eqU8- 
tlon (1.9) expressing the law of conservation of energy of 8 particle is 

not satisfied. However, it Is possible to deu8sd that the iutegral law 

of oonserr8tios of enerllJ l&e satisfied. If the iaitial enerU of the un- 
disturbed gas is seglectsd, which corresponds to the c8se of 8 strong 

shock wave. then the balance of energ for the motion of the g8s is given 

by the relation 

R t 

2r + h,) rdr + Q (t) = 2~1 p*(R, t)R $- dt (6.3) 
ra 0 

In (6.5) Q(t) signifies th8t part of the energy which Is added to the 
g88, for exuple 8s 8 result of chemical or nuclear truraformstions, snd 

removed from the outer snrfsce as 8 reSUlt of rrdirtion. On the right- 

h8nd side of (6.3) is the work of the total pressure force on the bouudatf 

of the cylinder at time t. Let y P 3 for siwpllcitf. Then using (6.2) md 
(6.5) we find for the ousntftx Q(t) 

ge note that the solution of the equations of rapetohydrodjn~mlcs 
with y = 2 with application to other problems wss consldered also br 

other authors (see. for exupfe, [ 15 3 I.1 
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