SOME SOLUTIONS OF THE EQUATIONS OF
ONE-DIMENSIONAL MAGNETOHYDRODYNAMICS
AND THEIR APPLICATION TO PROBLEMS OF

SHOCK WAVE PROPAGATION

(NEKOTORYE RESHENIIA URAVNENII ODNONERNOI NAGNITNOI
GIDRODINANIKI I IKH PRILOZHENIIA K ZADACHAN
O RASPROSTRANENII UDARNYKH VOLN)

PN Vol.24, No.i, 1960, pp. 111-120

V.P. KOROBEINIKOV and E.V. RIAZANOV
(Moscow)

(Received 24 Augnst 1959)

This paper points out cases of integrability of the equations describing
one~-dimensional motion of an electrically conducting gas with cylindrical
and plane symmetry, the case of cylindrical symmetry being considered in
greater detail. For steady motions with infinite conductivity a general
solution of the equations is found, and a short description is given of
the corresponding flows.

Unsteady self-similar and non-self-similar motions associated with
shock waves are considered. A method is given for joining the solutions
[1-3] to gas at rest by means of a shock wave., Concrete cases are solved
which may have application to the theory of impulsive gaseous discharge.

1. We will consider the motion to be one-dimensional with cylindrical
or plane symmetry. All functions characterizing the motion will depend
on the one geometric coordinate r and time t.

For the case of a perfect gas of finite conductivity with viscosity
and heat conductivity neglected, we have for the unknown quantities the
system
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One-dimensional magnetohydrodynamics equations and shock waves 145

Here H, and H¢ are the components of the magnetic field intensity
vector, v. is the magnetic viscosity, v = 2 for the case of cylindrical
symmetry and ¥ = 1 for motion with plane waves; the remaining symbols
are conventional or are obvious from the equations. The magnetic field
intensity vector H is always perpendicular to the velocity vector. For
v = 1 the azimuthal component of the field should vanish (h; = 0). In
place of one of the equations of the system (1.1)-(1.2), for example,
the first of Equations (1.1), one can take the equation expressing the
law of conservation of energy [ 4]

S ) o ()
-—vm(Z(v-——i)T?(rhq,‘/z)—l— a':)]}= 0 (1.3)

In the case of infinite conductivity the system of equations (1.1)-
(1.2) simplifies because v, = 0.

For homothermal flows, that is, flows with zero temperature gradient
[1], Equation (1.2) is replaced by the equation

T Joar=0 or p=1H0(t)p (1.4)

For unsteady motions of an ideal medium including shock waves, the
conditions of conservation of mass, momentum, continuity of the electric-
al field, and energy must be satisfied. For propagation of a shock wave
into a quiescent medium they have the form

pe(Ve—u) = —pui, v (v3—u)+ p'=p° (u =dry/ dt) (1.9)
hzzpl2 = hzlpzz» hvszz = h¢1922 (1-6)

2 .
(v, — u) (% + .71’%1 + h2> Fvp = —u (7—}1 + ) .7

where the subscript 1 denotes quantities in the undisturbed medium and
the subscript 2 quantities behind the shock wave front, u is the speed
of the wave, and r,(t) its radius.

2. In the steady case the system (1.1)-(1.3) withv_ =0, v = 2 can
be integrated completely, having the five integrals *

22

=cipY, pUr==cy, hy=1cyr’?, h,= cp?,
P 1P p 2 ? 37p z 4P +T—1)P ’

* The possibility of integrating the system(1.1)-(1.2) in the station-
ary case when there is only one of the components h or h¢ was pointed
out by K.P. Staniukovich [5].
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where c¢;, ..., ¢; are arbitrary constants.

A characteristic singularity of the flows under consideration is the
presence in the stream of two limit lines on which
v " Ld
v __ . p+2h /s
TRy ey
that is, the speed of the gas is equal to the total speed of sound*. If
ro and rl(ro < rl) are the radii of the limit circles, then in the
general case flow is possible only in the region enclosed between the
cylinders with radii r, and r,, where either v < a* or v > a*.

The dependence of the radii ry, r, and of the value of the density at
the limit lines on the constants Cyr vves Cg is given by the relations

-
(fexg™=" o 26s - 2e9r) pr® = %, L e + 3o e+ eor®) =
Investigation of the solution (2.1) shows that in the subsonic (super-
sonic) regime as r increases from r to r, the speed may at first de-
crease (increase)to a certain minimmm (maximum), and then increase (de-
crease) to the value a*

In the more general case of finite conductivity the integration in
closed form cannot be carried out.

We note that in the case under consideration two finite algebraic in-
tegrals can be found for the system (1.1)-(1.2)

purt—1= M,, 2 + -}— (v —1) Myrv—thyYs + Mgh,'s =M,

where M,, ..., M, are arbitrary constants. In the case of isothermal
steady flows with infinite conductivity for » = 2 the problem of inte-
grating the system of equations (1.1) and (1.4) leads to the solution of
one first-order ordinary differential equation, which is easily integrat-
ed when h¢ = 0.

In the case y = 2, v_ = 0 the solution of the system of equations
(1.1) and (1.2) also simplifies, since it has the integral

p=0, (E) b,

where'bl(f) is an arbitrary function of the Lagrangean coordinate £. It
is easy to show that if hb 0 then any solution of the equations of
ordinary gas dynamics permits one to construct a solution of the system
(1.1) and (1.2), having, in addition, one arbitrary function. For this

* Thig fact was also noted in [5 1.
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it suffices to take
v=vy, p=pn P =P, p=p—h, h=0(%F7

where vy, p,, p, are the solution of the equations of ordinary gasdynamics,
and <I>(£g is an arbitrary function. The conditions (1.5) and (1.7) at the
shock wave also transform into the gasdynamic ones if p* is introduced
throughout.

Thus, there results a special separation of the problem into a purely
hydrodynamic one together with the problem of determining the magnetic
pressure.

(Example. Let us consider the problem of a strong explosion along a
plane in an ideal conducting gas in its usual formulation [6 ]. For a
strong explosion p,* >> p,*. Neglecting p;* in (1.5) and (1.7) we have
the conditions on the shock wave [7]

2
Vg = —23‘ u, pz*-: '5" pluz, h22 = ghzl. P2 = 39]_ (22)

We take p; = const, h,, = const. The solution for v(r, t), p(r, t),
p*(r, t) is known [6, 81. In addition, we have hl/p2 = (D(f). Imposing
the conditions at the shock we find () = h,,/p2. Thus

[4 2 p 2
hz=<;> hay p=p'— (;,;) b,

The law of propagetion of the shock wave is the same as in the ordinary
gasdynamic case.)

3. In[9] it was shown that the solution of self-similar problems
for adiabatic motion with v_ = 0 leads to the integration of two (in some
cases one) ordinary equation.

A new example of a self-similar solution is given below. We consider
the motion of a piston in a quiescent gas when the speed of motion of
the piston is given by the law

U = Altn

The initial radius of the piston is equal to zero, and the initial values
of p, p, h h¢ are

z'
pr = Agr~e, P = Agr—*, hay = xAgr—8, he, = Lx_zi—_i% Agr—t

Here Ay, Ay, A; are dimensional constants, and n, ®, 8, ¥ are pure
numbers.

From dimensional considerations [61] it follows that this problem with

V= 0 is self-similar if the constants n, o, B are connected by the
relation
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B=w—2+42/(n+1)

Using a numerical method for integrating the system of self-similar
equations [ 9] it is possible to solve the problem of the motion of a
cylindrical piston for various values of n and w. The results of calcu-
lations for the case of a cylindrical piston withn =0, w= 0, h; = 0,
h,, = 0.025 pluz, y = 2 and y = 5/3 are given in the figure in the form
of the dependence of the dimensionless quantities

v/vzl P/Pz: P/Pg: hz/hzz on A = r/r2

Here the values of v/v, on the piston for y = 2 and y = 5/3 are equal
to 1,451 and 1.337 respectively.

Now let Ve £ 0; we take
VY = AAPa'pa’ (Aq, a3, a2 = const)

The problem under consideration of a piston moving with constant speed
is self-similar if the dimensions of A, depend on the dimensions of 4,
and 4,.

This is realized if the following relationship holds:
3, + 22301 ) (o a0 —3)+2=0

A class of self-similar solutions exists also for the system of equa-
tions describing unsteady homothermal flows of a conducting gas. Here
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0(t) is a power of t. As for adiabatic flow, in the case under consider-
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ation with v = 0 there exists a *frozen" integral [9]. Therefore, the
solution of all self-similar problems reduces to the integration of two
ordinary equations.

4. Another class of solutions of the equations of one-dimensional
magnetohydrodynamics, which we shall consider in detail, is the case of
solutions for which the velocity v depends linearly on the radius.

In the case of adiabatic motion of a gas without shock waves solutions
of such a type were obtained and investigated by Kulikovskii.

For arbitrary y this solution contains one arbitrary function, and for
the most interesting case v = 2 can be written in the form

r=tlE, =P O PYO=2PO (=D
p=[0P (§) + bolp™, hy = [bsP (E) -+ belpt™* (4.1)

g = - {by + b [2P () — 2P, (3)])
The function p(t) satisfies the equation

@) =71w=

Here b,, ..., b; are arbitrary constants, ¢ is the Lagrangean co-
ordinate, and P(£) an arbitrary function such that P’ (£) > 0, For v = 2
we have an analogous solution containing two arbitrary functions [3]

by Y — 2b: Ingw < by 4 b,

~—
H

r=E 8 P
p=IB,P(3) ; B,—T@lu™,  hy=TI(Ep (4.2)
hy == — (B + By [2*P (§) — 2P, (9}

@) =/(w) =B —2BInu -t By

where B}, ..., By are arbitrary constants, and P(£) and [I{¢) > 0 are
arbitrary functions, The solution (4.2) was also found by Kulikovskii®.

Solutions analogous to (4.1) and (4.2) of the equations describing
motion including the force of gravity were considered in[3 1.

Solutions of the form (4.1) and (4.2), which contain arbitrary func-
tions, may be joined with a shock wave to the trivial solution - gas at
rest ~ and describe the flow of gas accompanied by shock waves. In the
still medium ahead of the shock wave v, = 0 and, as follows from the

* On some new exact solutions of the equations of magnetohydrodynamics.

Dissertation submitted for the degree of candidate in physico-mathe-
matical science, Moscow, 1959,
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system (1.1)-(1.2), the density p; may be any function of r,and the
magnetic and hydrostatic pressures are related by the equilibrium equa-
tion

2/

J “);; -
=5 (p1 4 Iy) 4+ .0 (43)

r

From (4.3) it follows that if h¢ = 0 or hgy = r=2 const, then py +
h,; = const.

In the case of a gas with y = 2 (h; = 0) the problem of joining the
solution to still gas by means of a sﬁock wave (which we will henceforth
call the joining problem) leads to the gasdynamic one.

Now the joining problem for the gasdynamic solution of the form (4.1)
with arbitrary y was solved in [10-12 1. In Shikin’s paper [ 12 ] the de-
tonation wave was also considered. As already noted, after solution of
the gasdynamic problem the conditions for the discontinuity in the field
(1.6) can be satisfied by the choice of the two arbitrary functions
appearing in the solution. With this choice one of the functions p, or
hz1 remains arbitrary. Using the results of [12 ], in a similar manner
(for y = 2) we obtain the solution of the problem of joining the solution
(4.2) with still gas by means of a detonation wave. In view of what has
been said above, we will not write out the solution of the joining
problem with y = 2 for a shock wave of arbitrary intensity. The joining
problem for (4.1) can be easily solved in the limiting case of shock
waves that are strong in the gasdynamic sense.

We assume that p1u2 >> yp, — 2h,. Then the conditions at the shock
wave take the form [7 ]

141 T2
b2 = 7 Pe hz‘z:(.‘r‘;‘ﬂ hay
(4.4)
~ 4 4\ 2 N . 2
hgp = (\,:,__ 1) R, P2 = o ;i vy o= T u

In the problem under consideration it is possible to use the arbitrary
function P(£) appearing in the solution (4.1) and also the arbitrarily
assigned p,(r), h, ;(r), hy,(r) and the speed of the shock wave u(r,).
With the choice of these five functions one can satisfy all the condi-
tions at the shock wave (4.4).

Satisfying the conditions at the shock, we find that the arbitrary
function P(£) should have the form
L _dg N\_df | \ € .
L@ =[t+ G exr (—\ 58 e o (¢ e) (4.9)

where
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e d 4 E o, B, U by
/ (;) = ?; 1 —T_j Ils lll'F;—T' bs(-—b_;/) YT o == 7_1 (b9:: COHS‘)

The law of motion of the shock wave is given by the relation

ry = by +1) (bg = consl)
Thus
w—11,r, YL gp —1g o ry Tl
o1 () — f = iT(les ) = ()= (.j‘_+_i/> [bsP (3) - - 1’3](175)
12 1b Ao ]1 .
N \2 by r v+1 . -9 " ’ o= vl -
/"&1 (7) = (m) Jlr—z- - Z)3 [(bg) P(T) 2" Pl (.) J o bB 1’

where P(x) is given by the relation (1.5).

In order that the equilibrium equation may be satisfied, the initial
pressure p; must depend on r in the following way:
e (1)
ﬁ@j:hr—mdﬂ~mmvy~2y—7—dr@m:cmﬂ)
The set of constants appearing here can be used to satisfy the other
conditions exactly or approximately in concrete cases.

The joining problem can be solved also for arbitrary y and shock
waves of arbitrary intensity with variable h_,, p;, p, and hy = 0. Its
solution can be found, for example, by the method of joining of [12].

(Example. Let us consider the example of the application of the solu-
tion (4.2) to the problem of the motion of gas being compressed by a
piston moving with speed

v=RrRY -4

>

Ty

1/765» (R(t) is the radius
of the piston)

The minus sign corresponds to motion toward the center (axis of symmetry),
and the plus sign to motion away from the center (axis). For simplicity
we will take the shock wave to be strong. Let the initial values of P
Pys hzl be

pr=Ac,  p =L—h,, hy=Ly 4L (A, L, Ly, Ly = const)

Using (4.2) and (2.2), we find that the flow of gas behind the shock
wave is determined by the formulas

B ll/ r

p= BB, p =3B (5 AoBy — 3BeLy ) £
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I'2=l;6-’/"y.a/", hz = ng‘ (Ll T BGHL‘ZgB) P'—av P-?' = B7 '_‘t ZBX‘/"[ (4.6)
Here B., is an arbitrary constant. Among the constants Ao, Bl, B6, L2
there is the relationship
8Lg + AQB)BG-" =

For the azimuthal field creating the magnetic field hz we have

9A4,B:1B® .
| = ——t————¢r?u~12 (¢ is the speed of light
I V-S'rthz ' P ght)
This follows from the formula
4 oH,
= Iy T Tor

The law of motion of the piston is given by the relation

Bt Y
R~-Ro(lj:_ .
where Ro is the radius of the piston at the initial instant ¢ = O.
For the converging piston we have the initial value of the velocity

. B
Uy - -~ 7R Ry

Such a family of motions can be created, for example, by the applica-
tion to a gas of an external magnetic field. If there is a vacuum out-
side the piston, then the total pressure on the piston should be compen-
sated by the application of an external magnetic field h such that the
relation p*(R, t) = ll /Brr.. h is satisfied. Naturally the solution
(4.6) describes the flow for those values of r where p; > 0, h 21> 0. )

5. In the case of homothermal flows the system of equations (1.1),
(1.4) with »_ = 0 also has exact solutions, where v(r, t) has the same
form as in (4.1). These solutions contain either arbitrary functions of
¢ or arbitrary functions of the time f11.

For homothermal flows with v_ # 0 one may take v_ = v _(¢). Then by
using the choice of the arbltrary function P(£) appearlng in the solution
of the equations for an ideal medium [1] it is possible to find a
particular solution of the full system (1.1), (1.4) when h  or h
absent. This solution will contain a certain number of arbitrary constants.

For homothermal flows with linear dependence of velocity on radius
(for v, = 0) one can also consider the problem of joining the exact
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solution with still gas through a shock wave. The case when the solution
contains an arbitrary function of time was considered previously [1].

We write the particular solution of the system (1.1), (1.4) in the
form 1]

rodu Py o -0 T -
Elzm?;-, _():——-—;;:——w—, 9(:}.) =6y, II;PM—;E— (v_).i)

he = L}-z — &P (E)—¢ Plg(z)*} nt p=0we,  j(w) = (@) =d— 8

where 8, ..., §; are arbitrary constants. We will take &, = 0. Using
the relation

) \ ra dp d%y 1 ((}fg s
U Ty = li( —-—‘-:-;717;>‘ ”*—'u,:"( TR e §

from the solution (5.1) and relations (1.5), (1,6) we have

>

P(ry)= Xpl {ra) radry {5.2)

" ';-v ' * * FA
{on oy radry =t f 4+ 52 20— B o () — -2 (2 info (1) + )]

3(u) = (:f«?~ ;—) (k1 = const) (5.3)
The relation {5.3) gives the law of motion of the shock wave.

Satisfying conditions (1.6) we find for the discontinuity in magnetic
field

s s du " ) A
ey () = iy (ra) = 74 (B — BsP (ra)) (1= 22 T )— bt () (1= 2 55
(5.4)
where u(r,) is a known function from (5.3).

The dependence P(r,) is found from (5.2) if p,(r) is considered a
given function. For the full solution of the problem, however, it is
necessary to know P(£).

Using (5.3) and the form of the function P(r,), we can find the de-
pendence P({). It is given by the relations

PE)=Plry(8)]

€3 (re, &)

\ e Jo i__EE 6(’21 E) =
e Spl(rz)rzdraf-ln"r 33“—7‘;—@—' (5.5)

Pl*’zﬁ

5o 0 9—F () nfrc 1 5]

P By \
o (ra B = (¥t —52)"

3
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We consider further one special case. Let p,* = 0 (a strong wave) and

p, = const. In this case for the function P(£) and the law of motion of
the shock wave we have the relations

20PH— Bl = et 2 [P — ZT[(P© — 2) — k7]

2 Ss/pret | p B\, B\ u-l
P‘—_‘ask Z ! By ( ;- B 3 ks

Z O3

The initial magnetic field is given by the formula

5 ¥ — ke [.1 " ky%pyr?
By x . ‘/."/‘(‘/.ﬁklz)]

=)= (‘ﬂzf‘ +4- B — ‘:—:‘)2 (B = const)

From (5.1) we find the dependence p(t):

w(t) = V 85 (1 —1to)* - —2% (to == const) (5.6)

The solution (5.1)-(5.6) can be used for the investigation of concrete
problems and, in particular, can have application to the problem of com-
pression of gas by a converging or diverging piston, where the law of
motion of the piston is given by the dependence

R=A V% (t—1t,)? - Za (A == const)

Considering the remarks made in Section 4, one can say that the
problem of compression of gas by a converging piston is equivalent to
the problem of an impulsive gaseous discharge with passage of current
through a gaseous cylinder in the axial direction. The magnetic field of
the current flowing on the surface of the cylinder will play the role of
a piston compressing the gas.

6. (Example. Let us consider the exact solution of the problem of
an impulsive gaseous discharge. Let there be at the initial moment t = 0
a cylindrical column of gas heated to a temperature at which the con-
ductivity of the gas may be considered infinite. In the gas there is a
*frozen in* magnetic field with vector intensity H parallel to the axis
of the cylinder. The initial density of the gas is constant and equal to
Pis and the total pressure in the gas pl' = const,

The initial intensity of the magnetic field is constant with radius,
its dependence on the coordinate r being given by the formula
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el r*e (r) Bateirte (r)
[Bz (i 3°P1 q;,(,.)) Blpre (f)} (i -B—ia:;’Tq;”(r—))[ ()2 6.1)
where ¢(r) is determined from the equation

Pre®— 28 (Bs— -; pri) e+ Bat =10 (Bi, - . ., Bs=rconst, B3>0, B3> 0)

The choice of the dependence of hzl on r in the form (6.1) is based on
the subsequent use of the solution (5.1)-(5.8) with 83 = 0. Pormuls (6.1)
is essentially a consequence of the relation (5.4) with the arbitrary
constants re-designated.

Let the initial radius of the gas cylinder be Ro. At the moment t = 0
a current begins to pass along the column in the axial direction, varying
with time so that the total current is given by the formula

Vix BiBs
I = Bo—Bot ¢ {Bo, B1 = const > 0)

For ¢ > 0 as a consequence of the pinch-effect there begins a contrac~
tion of the plasma sheath outside of which p = 0. A shock wave will pro-
pagate toward the center of the gas. It is required to determine the
motion of the gas between the shock wave and the ocuter radius of the gas
column,

In a formulation different from that stated above (in the sense of the
given initial conditions) the problem of the compression of a gaseous
cylinder by a current was considered in a series of works (see, for
example, [13-14]).

We will consider the problem in the approximation of magnetchydro-
dynamics and suppose that the gradient of temperature in the region be-
hind the shock wave is equal to zero. The quantities p, P, h and v be-
hind the wave front are related by the equations of nagnetohydrodynnnics
(1.1), (1.4); on the shock wave front itself the laws (1.5), (1.8), which
are the boundary conditions for the unknown functions, must be satisfied,

On the outer surface of the cylinder there must also be satisfied the
kinematic condition w(R, t) = dR/dt, where R(t) gives the dependence of
the radius of the cylinder on time. The solution satisfying the system

(1.1), (1.4) and the initial and boundary conditions enumerated above has
the form

- P 2
v=—8&  (E=jTmpr). Pe0wn V0= lior
F
P T = (B — BF (8) (Ba— Bat)e 6.2)

Ba® (182 4+ Py’ Bs~®) — ps” [2Bsy — (BaBs71)3]
¥ 728 (Bs— pr Ba? — piE%y) (B2 A+ 1 Bs~%p™Y)

F ()
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where y(£) is found from the equation
V(P8 4+ Bt ) — 2By + (BaBe1)? =0

For the radius R of the cylinder and the radius ry of the shock wave
we have

R (1) = B1 (Bo — Bst). Ro = 81f0
ra(t) = 2Bspr — Bs~%p1t [Ba® + P1” (Bo — Bst)?] (Bo— Bst)?

From (6.2) it 1is clear that the temperature in the region of motion
of the gas grows proportional to (8, — B, )~ 2, If we suppose that
Py® >> py*, then the quantity pl’ in (1.5) may be neglected. The formulas
giving the solution are, thus simplified.

The solution (6.2) was obtained with the choice, described in Section
5, of (5.1) with 83 = 0, Prom (6.2) it follows that the total pressure
on the outer boundary of the cylinder p,* is equal to the magnetic pres-
sure outside the cylinder
s
hy = Seo By

arising from the passage of the current I over the surface of the cylinder.

Since in the region of flow we took dT/Jr = 0, the differential equa-
tion (1.3) expressing the law of conservation of energy of a particle is
not satisfied. However, it is possible to desand that the integral law
of conservation of energy he satisfied. If the initial energy of the un-
disturbed gas is neglected, which corresponds to the case of a strong
shock wave, then the balance of energy for the motion of the gas is given
by the relation

R t
2«& 03—2-”1 ¥ 7—{}—1 + hz> rdr + Q (t) = an (R, DR -‘%— dt 6.3)
Ts 0

In (6.3) Q(t) signifies that part of the energy which is added to the
gas, for example as a result of chemical or nuclear transforsstions, and
removed from the outer surface as a result of radiation. On the right-
hand side of (6.3) is the work of the total pressure force on the boundary
of the cylinder at time t. Let ¥y = 2 for simplicity. Then using (6.2) and
(6.3) we find for the quantity Q(t)

Q /8 B0 20 e
s = (B + o Gmﬁ:‘yo’ — B 0 p,s. (sB Do+,
_ B (1 ) "
+ BBm + %’Bn‘?

We note that the solution of the equations of magnetohydrodynamics
with y = 2 with application to other problems was considered also by
other authors (see, for example, [151).)
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